dependent diol dehydratase and ethanolamine ammonia lyase

Rosaleen J. Anderson, ${ }^{* a, b}$ Susan Ashwell, ${ }^{b}$ Ian Garnett ${ }^{b}$ and Bernard T. Golding * ${ }^{b}$<br>${ }^{\text {a }}$ Institute of Pharmacy and Chemistry, Fleming Building, University of Sunderland, Sunderland, UK SR1 3SD<br>${ }^{b}$ Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, UK NE1 7RU

Received (in Cambridge, UK) 20th June 2000, Accepted 19th October 2000
First published as an Advance Article on the web 28th November 2000

Coenzyme $\mathrm{B}_{12}$-dependent diol dehydratase converts 1,2-diols (e.g. propane-1,2-diol) into the corresponding aldehyde and water. The similar enzyme ethanolamine ammonia lyase transforms vicinal aminoalcohols (e.g. 2-aminoethanol) into the corresponding aldehyde and ammonia. Model systems have been developed that replicate key features of the putative enzymatic mechanism, i.e. removal of a hydrogen atom from the $\mathrm{CH}_{2} \mathrm{OH}$ group of a 1,2-diol or vicinal aminoalcohol by a methylene radical derived from an alkylcobalt compound, and conversion of a 1,2-diol or vicinal aminoalcohol into a carbonyl compound and water or ammonia triggered by such a methylene radical. The models are based on alkyl(pyridine)bis(dimethylglyoximato)cobalt complexes [alkyl(pyridine)cobaloximes, Cbx], which were synthesised from appropriate organic precursors using standard methodology. The complexes contain a 1,2-diol [as in 4,5-dihydroxy-2,2-dimethylpentyl(pyridine)cobaloxime] or vicinal aminoalcohol [as in 6-amino-5-hydroxy-2,2-dimethylhexyl(pyridine)cobaloxime] tethered to the cobalt by a carbon chain. Photolysis or thermolysis of 4,5-dihydroxy-2,2-dimethylpentyl(pyridine)cobaloxime at pH 3 or 9 gave 4,4-dimethylpentanal. It is proposed that homolysis of the Co-C bond of 4,5-dihydroxy-2,2-dimethylpentyl(pyridine)cobaloxime induced by photolysis or thermolysis affords the 1,2-dihydroxy-4,4-dimethyl-1-pentyl radical via a 1,5-H shift, which is converted into the 4,4-dimethyl-1-oxo-2-pentyl radical, and hence 4,4-dimethylpentanal. The pathway for formation of the aldehyde was diagnosed using the specifically deuteriated analogue $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]-4,5$-dihydroxy-2,2-dimethylpentyl(pyridine)cobaloxime, which gave [1,5-2 $\mathrm{H}_{2}$ ]-4,4-dimethylpentanal accompanied by 3,3-dimethylbutanal on thermolysis or photolysis at pH 3 . The protected model compound 2 a was hydrolysed to 6 -amino-5-hydroxy-2,2-dimethylhexyl(pyridine)cobaloxime, which was heated at pH 3 or 9 to give 5,5-dimethylhexan-2-one and ammonia.

## Introduction

The coenzyme $\mathrm{B}_{12}$-dependent enzymes propanediol dehydratase (EC 4.2.1.28 from Klebsiella pneumoniae), ${ }^{1}$ glycerol dehydratase (EC 4.2.1.30, also from $K$. pneumoniae) ${ }^{1 d, 2}$ and ethanolamine ammonia lyase (EC 4.3.1.7 from Clostridia) ${ }^{3}$ perform similar reactions. The diol dehydratases catalyse the conversion of a 1,2-diol into the corresponding aldehyde and water [eqn. (1)] ${ }^{1,2}$

wile ethanolamine ammonia lyase catalyses the conversion of a vicinal aminoalcohol into the corresponding aldehyde and ammonia [eqn. (2)]., ${ }^{3,4}$ These enzymes have been termed

(R = H or Me)
eliminases because the overall catalytic reaction is an elimination of either water (diol dehydratases) or ammonia (ethanolamine ammonia lyase) from a substrate molecule. ${ }^{5}$ The diol dehydratases and ethanolamine ammonia lyase belong to a
class of coenzyme $\mathrm{B}_{12}$-dependent reactions ${ }^{5,6}$ in which a substrate molecule ( SH ) is converted into an intermediate substrate-derived radical $\mathrm{S}^{*}$. A group $\mathrm{X}\left(\mathrm{OH}, \mathrm{NH}_{2}\right.$ or substituted carbon) is thereby activated, and migrates ( 1,2 -shift) to the radical centre. This leads to an isomeric radical ( $\mathrm{I}^{*}$ or $\mathrm{P}^{+}$, see Scheme 1) and hence to an intermediate ( IH ) or product ( PH ).


Scheme 1 General mechanistic scheme for coenzyme $B_{12}$-dependent enzymatic reactions [ $\mathrm{AdoCH}_{2}-\mathrm{Cbl}=$ coenzyme $\mathrm{B}_{12}$ (adenosylcobalamin), $\mathrm{SH}=$ substrate, $\mathrm{IH}=$ intermediate, $\mathrm{PH}=$ product; $\mathrm{S}^{*}, \mathrm{I}^{*}$ and $\mathrm{P}^{*}$ are the corresponding protein-bound radicals].

With the diol dehydratases and ethanolamine ammonia lyase, IH loses water or ammonia to give the end-product aldehyde. The sequence described (Scheme 1) is initiated by homolytic fission of the cobalt-carbon $\sigma$-bond of the $\mathrm{B}_{12}$ coenzyme (adenosylcobalamin, AdoCbl), leading to the 5'-deoxyadenosyl radical, which abstracts a hydrogen atom from SH to give $\mathrm{S}^{-}$ and $5^{\prime}$-deoxyadenosine. The latter gives up a hydrogen atom to $\mathrm{I}^{*}$ or $\mathrm{P}^{\bullet}$ forming IH or PH and regenerating the $5^{\prime}$-deoxyadenosyl radical. According to the 'bound radical' hypothesis ${ }^{7,8}$ all of the radicals described are 'anchored' to the protein throughout.

Experimental support for the pathway described has come from spectroscopic studies (electron paramagnetic resonance, EPR) of the working enzymes, which detected intermediate radicals. ${ }^{3 b, 9,10}$ Model studies pertaining to the diol dehydratases have shown the possibility of activation of a 1,2-diol by hydrogen atom abstraction from $\mathrm{C}-1$, induced by a primary organic radical and leading, via a 1,2-dihydroxyalkyl radical, to a product aldehyde or ketone. ${ }^{11,12} \mathrm{~A}$ critical issue in the context of the diol dehydratases is the mechanism of the conversion of the intermediate 1,2-dihydroxyalkyl radical into a 1,1-dihydroxy-2alkyl radical. Insights into possible mechanisms ${ }^{13}$ have been provided by ab initio molecular orbital calculations, which have indicated that the enzyme mediates a 1,2-hydroxy shift by 'partial protonation' of the migrating hydroxy group. ${ }^{14}$ A recently determined crystal structure of diol dehydratase ${ }^{15}$ supports this mechanism by showing that the substrate diol binds at a distance of $c a .10 \AA$ from the cobalt of the cofactor, where it interacts with several amino acid residues and a potassium ion. The latter observation explains why diol dehydratase requires a monovalent cation for activity (preferably $\mathrm{NH}_{4}{ }^{+}$or $\mathrm{K}^{+}$). ${ }^{16}$ Hence, the migration of the hydroxy group may be assisted either through its interaction with the Lewis acid $\mathrm{K}^{+}$or through partial protonation by $\mathrm{NH}_{4}{ }^{+}$. The enzyme also contains an active site carboxylate (Glu 170 ), which interacts with the non-migrating hydroxy group and assists the rearrangement in a 'push-pull' manner. ${ }^{14,15}$
It was long ago suggested that the ethanolamine ammonia lyase reaction proceeds via intermediate radicals. ${ }^{17}$ This conclusion was supported by EPR studies ${ }^{10}$ and by the finding that the chiral methyl group in the ethanal derived from incubating either enantiomer of $\left[2-{ }^{2} \mathrm{H}, 2-{ }^{3} \mathrm{H}\right]$-2-aminoethanol with ethanolamine ammonia lyase was racemic in each case. ${ }^{18}$ We have sought to develop a model system that replicates two key features of the putative enzymatic mechanism: (i) regiospecific removal of a hydrogen atom from CHOH of a vicinal aminoalcohol by a methylene radical derived from an alkylcobalt compound, and (ii) conversion of a vicinal aminoalcohol into a carbonyl compound and ammonia triggered by such a methylene radical.

In a preliminary communication ${ }^{11 f}$ we described a model system for diol dehydratase in which regiospecific removal of a hydrogen atom from a 1,2-diol was achieved by a methylene radical derived from an alkylcobaloxime [4,5-dihydroxy-2,2dimethylpentyl(pyridine)cobaloxime 1a], with conversion of the 1,2 -diol into an aldehyde. In this paper we provide full details of these studies and the results of further experiments with a specifically deuteriated diol substrate (1b), which supports the reaction pathway proposed. ${ }^{5}$ We also describe the first model system for ethanolamine ammonia lyase, which replicates the two features defined above. This was achieved by a remarkable remote functionalisation initiated from the oxazolidinone 2a of 6-amino-5-hydroxy-2,2-dimethylhexyl(pyridine)cobaloxime $\mathbf{2 b}$. This model compound was used, rather than a direct analogue of 1a, because of its synthetic accessibility. For both $\mathbf{1 a}$ and $\mathbf{2 b}$, the critical path between the initially formed radical and the site that undergoes H -atom abstraction is such that a $1,5-\mathrm{H}$ shift can occur. This has been shown to be favoured over a 1,4 - or $1,6-\mathrm{H}$ shift. ${ }^{11 d}$

## Results and discussion

## Synthesis of model compounds for diol dehydratases

The synthetic route to the unlabelled model compound, 4,5-dihydroxy-2,2-dimethylpentyl(pyridine)cobaloxime 1a starting from allyl alcohol 3a and isobutyraldehyde, via the intermediates 4 and 5a-9a, is shown in Scheme $2(\mathrm{X}=\mathrm{H})$. Photolysis or thermolysis of this compound at pH 3 or 9 gave 4,4dimethylpentanal 25a with yields in the range 15-45\%, Scheme 3. Formation of the aldehyde is initiated by homolysis of the Co-C $\sigma$-bond of 1a, with the resulting 4,5-dihydroxy-2,2-


Scheme 2 Synthesis of model compounds ( $\mathbf{1 a / b}$ ) for diol dehydratases. Reagents and conditions: $\mathbf{i} \mathrm{LiAlD}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 62 \%$. ii Isobutyryl chloride, pyridine, $0^{\circ} \mathrm{C}, 99 \%$. iii Lithium isopropylcyclohexylamide, $n$-butyllithium, THF, then TMSCl, $\mathrm{MeOH},-70^{\circ} \mathrm{C}$-reflux, $41 \%$. iv $\mathrm{LiAlH}_{4}$, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 80 \%$. v $p$-Cymene, $p$-TsOH, reflux, $60 \%$. vi $\mathrm{NaBH}_{4}$, EtOH , $\mathrm{NaOH}, \mathrm{rt}, 72 \%$. vii $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{MeCN}$, reflux, $91 \%$. viii $M \mathrm{CPBA}, \mathrm{CH}_{2}, \mathrm{rt}$, $73 \%$. ix $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO},-75^{\circ} \mathrm{C}, 64 \%$. x BrCbx, $\mathrm{NaBH}_{4}$, EtOH , $\{\rightarrow \mathrm{Cbx}(\mathrm{I})\}, 35 \%$. xi HCl (aq.), rt, $82 \%$.
dimethyl-1-pentyl radical 29a undergoing rearrangement to the 1,2-dihydroxy-4,4-dimethyl-1-pentyl radical 30a by a 1,5hydrogen shift (for further details see below). To support this hypothesis we synthesised the specifically deuteriated analogue 1b, by a similar route to that used for 1a, as shown in Scheme 2 $(\mathrm{X}=\mathrm{D})$. The main difference in the syntheses of $\mathbf{1 a}$ and $\mathbf{1 b}$ concerned the preparation of the intermediate 2,2-dimeth-ylpent-4-en-1-ol, either unlabelled 5a or dideuteriated at C-5, $\mathbf{5 b}$. In the unlabelled series this was obtained by acid-catalysed condensation of isobutyraldehyde with allyl alcohol, followed by an in situ Claisen rearrangement to afford 4, which was reduced to $\mathbf{5 a}$. For the synthesis of the corresponding dideuteriated compound $\mathbf{5 b}$, reduction of acryloyl chloride with lithium aluminium deuteride gave $\left[1,1-{ }^{2} \mathrm{H}_{2}\right]$ prop-2-en-1-ol 3b, ${ }^{19}$ which was converted into the corresponding ester $\mathbf{1 0 b}$ by treatment with isobutyryl chloride. The ester was subjected to an Ireland-type Claisen rearrangement, ${ }^{20}$ which afforded [ $5,5-{ }^{2} \mathrm{H}_{2}$ ]-2,2-dimethylpent-4-enoic acid 11b. Reduction of the acid gave the alcohol $\mathbf{5 b}$. The ${ }^{1} \mathrm{H}$ NMR spectral data for each deuteriated intermediate ( $\mathbf{3 b}, \mathbf{5 b} \mathbf{- 1 1 b}$, cf. Scheme 2) and for 1b was compared with that for the corresponding unlabelled compound ( $\mathbf{3 a}, \mathbf{5 a}-\mathbf{1 1 a}$ and 1a, respectively) and confirmed the integrity of the deuterium atoms throughout the synthesis.

## Synthesis of a model compound for ethanolamine ammonia lyase

The protected model compound 2a was synthesised from the same starting materials as used for 1a, via intermediates 12-19 (see Scheme 4). Thus, 2,2-dimethylpent-4-en-1-ol 5a was pro-



34
fragmentation


32
DNP 33 $\mathrm{i}^{\square}$


29b


31a/b

$25 a / b$
DNP $26 a / b$

Scheme 3 Thermal and photochemical decomposition of the diol dehydratase model. Reagents and conditions: i 2,4-Dinitrophenylhydrazine, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq.), rt.



Scheme 4 Synthesis of a model compound (2a/b) for ethanolamine ammonia lyase. Reagents and conditions: ip-Cymene, $p$ - $\mathrm{TsOH}, \mathrm{reflux}, 60 \%$. ii $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{rt}, 72 \%$. iii ${ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiCl}, \mathrm{DMF}$, imidazole, rt, $100 \%$. iv (i) 2-Methylbut-2-ene, $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, $0{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{rt}, 82 \%$. v $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 53 \%$. vi $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{NaOH}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 77 \%$. vii $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH}, \mathrm{rt}, 65 \%$. viii (i) $\mathrm{MeOCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 75 \%$. ix TBAF, THF, rt, $62 \%$. $\mathbf{x}\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-75^{\circ} \mathrm{C}, 100 \%$. xi $\mathrm{Cbx}(\mathrm{I}), \mathrm{EtOH}, \mathrm{rt}, 75 \%$. xii LiOH , in situ, rt, $100 \%$.
tected as its tert-butyldimethylsilyl ether $\mathbf{1 2}$, which was converted into the aldehyde 14, by hydroboration to alcohol 13, followed by Swern oxidation. Base-promoted reaction of 14 with nitromethane (Henry reaction) gave 15, which was reduced to 16. The amino and hydroxy groups in $\mathbf{1 6}$ were protected by formation of oxazolidinone $\mathbf{1 7}$. Removal of the silyl group from 17 gave 18, which was activated by conversion into triflate 19. Reaction of 19 with (pyridine)cob(I)aloxime gave cobaloxime

2a, which was fully characterised spectroscopically. In particular, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, including a COSY spectrum, were in complete accord with structure 2a. Numerous attempts to isolate analytically pure 6-amino-5-hydroxy-2,2-dimethylhexyl(pyridine)cobaloxime $\mathbf{2 b}$ from hydrolysis of $\mathbf{2 a}$ were unsuccessful. For thermal degradation experiments it was found best to generate a solution of $\mathbf{2 b}$ in situ by hydrolysis of $\mathbf{2 a}$, carefully monitored by TLC.

## Thermolysis and/or photolysis of model compounds $\mathbf{1 a / b}$ and 2 b

Thermolysis and photolysis of alkylcobaloximes cause homolysis of the Co-C bond and the release of the alkyl group as a radical. ${ }^{21}$ The rates of these processes and the fates of both the alkyl radical and cob(II)aloxime moiety are pH -dependent. Early models for diol dehydratases used photolytic cleavage of the $\mathrm{Co}-\mathrm{C}$ bond as this process occurs readily in aqueous media in contrast to the relatively harsh thermal conditions required. ${ }^{11 a-e, 12}$ However, the initial homolysis proceeds from an excited state of the alkylcobaloxime and may be regarded as an imperfect model for the enzymatic reactions, which are nonphotolytic. The gem-dimethyl group in compounds 1a, 1b and $\mathbf{2 b}$ significantly lowers the temperature required to achieve thermal homolysis of the $\mathrm{Co}-\mathrm{C}$ bond and also blocks a side-reaction observed with simpler model compounds [e.g. 4,5-dihydroxypentyl(pyridine)cobaloxime], whereby a $\beta$ elimination involving the 4,5-dihydroxypentyl radical diverts this radical from a 1,5 -hydrogen shift towards the by-product 4,5-dihydroxypent-1-ene. ${ }^{11 d e}$ This strategy was based on the observation of Grate and Schrauzer and others that the thermal stability of neopentylcobalamin is much lower than that of alkylcobalamins with primary alkyl groups. ${ }^{22}$

Following thermal or photochemical degradation of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2 b}$, aldehyde and/or ketone products were isolated, characterised ( ${ }^{1} \mathrm{H}$ NMR and MS analyses) and quantified (UV-VIS spectroscopy) as their 2,4-dinitrophenylhydrazones (DNPs). This method was validated for both $\mathbf{1 a}$ and $\mathbf{2 b}$ by independent analysis of the product aldehyde or ketone by GC. Authentic samples of 4,4-dimethylpentanal 25a and its DNP derivative 26a were independently synthesised (Scheme 5). All thermal


Scheme 5 Synthesis of authentic samples of the standards, 4,4dimethylpentanal 25a and its DNP 26a, and 4,4-dimethylpentane-1,2diol 28. Reagents and conditions: $\mathbf{i}$ (i) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, 2-methylbut-2-ene, $0^{\circ} \mathrm{C}$. (ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 5^{\circ} \mathrm{C}, 62 \%$. ii Pyridinium dichromate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 75 \%$. iii 2,4-Dinitrophenylhydrazine, $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq.), rt, $63 \%$. iv $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}, 2,6-$ tert-butyl-4-methyl-pyridinium tetrafluoroborate, benzene, reflux, $75 \%$. v $\mathrm{Ph}_{3} \mathrm{SnH}$, AlBN, benzene, $45^{\circ} \mathrm{C}, 67 \%$. vi THF (aq.), DOWEX 50W, rt. vii $\mathrm{Bu}_{3} \mathrm{SnH}$, benzene, reflux, $81 \%$. viii $\mathrm{CH}_{3} \mathrm{OH}$, MeCOCl, reflux, $90 \%$.
and photochemical experiments were performed, at least in duplicate, with a deoxygenated solution (argon or nitrogen) of the alkylcobaloxime. It was shown for 1a that admission of oxygen to reactions reduced the yield of aldehyde to zero.
Heating 1a in pH 3 aqueous acetic acid for 7 h at $100^{\circ} \mathrm{C}$ caused complete decomposition of the alkylcobaloxime and gave 20-22\% 4,4-dimethylpentanal $\mathbf{2 5 a}$ according to both DNP and GC analysis. Thermal decomposition of $\mathbf{1 a}$ at pH 9 , $100^{\circ} \mathrm{C}$, gave $15-21 \%$ 4,4-dimethylpentanal (DNP and GC
analysis). Photolytic degradation of 1a gave 43-45\% 4,4dimethylpentanal at pH 3 and $20-25 \%$ aldehyde at pH 9 (DNP and GC analysis). The reaction mixtures were also analysed for the presence of 4,4-dimethylpentane-1,2-diol 28 (authentic sample obtained as shown in Scheme 5), because pentane-1,2diol was a significant by-product in the photolysis of 4,5dihydroxypentyl(pyridine)cobaloxime. ${ }^{11 d, e}$ However, no 28 was found, indicating the improved efficiency of the model resulting from gem-dimethyl substitution. Heating or photolysing 1b at pH 3 using the procedures described for 1a gave a mixture of two DNPs, which were identified as 26b and $\mathbf{3 3}$ by comparison of the ${ }^{1} \mathrm{H}$ NMR of the mixture with data for authentic samples (i.e. non-deuteriated 26a in the case of 26b). For photolysis a ratio of $c a .1: 1$ was obtained for $\mathbf{2 6 b}: \mathbf{3 3}$, whereas thermolysis gave predominantly 33 . The spectrum corresponding to 26b showed a singlet at $\delta 0.93(6 \mathrm{H})$ for the gem-dimethyl group and a broad resonance at $\delta 0.92(2 \mathrm{H})$ assigned to the $\mathrm{CH}_{2} \mathrm{D}$ group. The resonance observed at $\delta 7.57$ corresponded to $c a .0 .5 \mathrm{H}$ and was assigned to the hydrazone CH of 33 , there being no resonance from the deuterated hydrazone of 26 a .

The oxazolidinone group of the protected cobaloxime $\mathbf{2 a}$ was hydrolysed using 1 M lithium hydroxide in water (7 days at room temperature, in darkness). This procedure had been previously developed for the hydrolysis of $\mathbf{1 7}$ to $\mathbf{1 6}$. Monitoring the hydrolysis of 2a using lithium hydroxide in $\mathrm{D}_{2} \mathrm{O}$ by ${ }^{1} \mathrm{H}$ NMR showed the disappearance of the resonances at $\delta 3.35,3.7$ and 4.6 from the oxazolidinone ring and the appearance of new signals at $\delta 3.2$ (assigned to CHOH of $\mathbf{2 b}$ ) and 3.35 and 3.7 (assigned to $\mathrm{CH}_{2} \mathrm{NH}_{2}$ of 2b). After adjusting the pH of the alkaline solution of $\mathbf{2 b}$ to 3 or 9 by addition of acetic acid and degassing with argon, it was heated at $100^{\circ} \mathrm{C}$ until decomposition was complete, as shown by TLC monitoring. Thus, heating $\mathbf{2 b}$ at pH 3 for 5 h caused complete decomposition of the alkylcobaloxime and gave $37 \%$ (average of two experiments) of 5,5 -dimethylhexan-2-one $\mathbf{3 5}$. The identity of the ketone was established by GC analysis of an ethereal extract of an aliquot of the reaction mixture, using an authentic sample of 5,5-dimethylhexan-2-one as a reference standard. Further confirmation of the identity of the ketone and its yield were obtained by conversion into its DNP derivative, which was also compared with an authentic sample. The DNP was obtained by adding the reaction mixture from a thermolysis of $\mathbf{2 b}$ to aqueous acidic DNP reagent and extracting with ether. The thermal decomposition of $\mathbf{2 b}$ at $\mathrm{pH} 9,100^{\circ} \mathrm{C}$, gave $50 \%$ (average of two experiments) of 5,5-dimethylhexan-2-one (DNP 36 and GC analysis).

After extraction of 5,5-dimethylhexan-2-one DNP, the solution was basified and distilled to give an aqueous solution of ammonia, which was analysed using Nessler's reagent. This gave ammonia yields of $47 \%(\mathrm{pH} 3$ thermolysis of $\mathbf{2 b}$ ) and $67 \%$ ( pH 9 thermolysis of $\mathbf{2 b}$ ). A control experiment was performed in which compound 16 was subjected to a sequence of thermolysis at pH 3 , addition to DNP reagent, basification and distillation. The resulting distillate contained no ammonia.

## Mechanism of thermal decomposition of 1a, 1b and 2b and photochemical decomposition of 1 a and 1 b

The decompositions of $\mathbf{1 a}$ and $\mathbf{1 b}$ under both thermal and photochemical conditions can be rationalised as in Scheme 3. The critical step following homolysis of the Co-C bond of 1a to give 29a is a $1,5-\mathrm{H}$ shift, which affords the 1,2 -dihydroxy-4,4-dimethyl-1-pentyl radical 30a. This species is converted into the 4,4-dimethyl-1-oxo-2-pentyl radical 31a, and hence 4,4dimethylpentanal 25a. The detailed mechanism of the pathway from 30a to 25a cannot be defined without further experimental information. In the light of recent ab initio molecular orbital calculations on the diol dehydratase reaction and the determination of the crystal structure of the enzyme (see Introduction), future model studies need to focus on the proton


Scheme 6 Thermal or photochemical decomposition of the ethanolamine ammonia lyase model compound.
transfer steps that may activate the migrating/eliminated hydroxy group in enzymatic and model reactions.

Following homolysis of the $\mathrm{Co}-\mathrm{C}$ bond of $\mathbf{1 b}$ to give 29b, the type of $1,5-\mathrm{H}$ shift proposed for $\mathbf{2 9}$ a is impeded by a primary kinetic isotope effect. ${ }^{11 d}$ Although an analogous $1,5-\mathrm{D}$ shift occurs with 29b to give 30b and hence $\mathbf{2 5 b}$ via 31b, a competing $1,5-\mathrm{H}$ shift occurs from the 2 -hydroxy group leading to 3,3 dimethylbutanal 32. Thus, it is proposed that 29b gives 34, which fragments to 3,3-dimethylbutanal 32 and the hydroxymethyl radical.

Thermolysis of $\mathbf{2 b}$ proceeds in a similar manner to the thermolysis of 1a. However, the $1,5-\mathrm{H}$ shift in the initially formed radical $\mathbf{3 7}$ now leads via $\mathbf{3 8 - 4 0}$ to the ketone product $\mathbf{3 5}$ and ammonia (see Scheme 6).

## Conclusions

The model experiments described in this paper support the proposed reaction pathways for propanediol dehydratase, glycerol dehydratase and ethanolamine ammonia lyase by showing that 1,2 -diols and vicinal aminoalcohols can be converted into a carbonyl compound and water or ammonia, respectively, by reaction pathways in which radicals are likely intermediates. The model systems described replicate an important feature of the enzymatic reactions, i.e. the regioselective activation of a substrate molecule by a hydrogen atom abstraction induced by a primary organic radical. However, the detailed mechanisms of rearrangement of the radicals can only be determined by further investigations.

## Experimental

## Materials and methods

Unless otherwise stated gas chromatography (GC) was performed on a Pye 104 machine fitted with an $8^{\prime \prime}$ ov17 column of 4 mm inner diameter with a nitrogen flow rate of $55 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$, and a temperature gradient of $12^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from $100^{\circ} \mathrm{C}$. Water for analytical purposes was obtained from a Purite still plus HP. Light petrol refers to the fraction boiling between 40 and $60^{\circ} \mathrm{C}$. Petrol refers to the fraction boiling between 60 and $80^{\circ} \mathrm{C}$. For other purification procedures and details of instruments etc. see ref. 23. All alkylcobaloximes were protected from light. $J$ values are given in Hz .

## 2,2-Dimethylpent-4-enal $4^{24}$

The aldehyde $\mathbf{4}$ was prepared as described by Brannock. ${ }^{24}$ Fractional distillation of the reaction mixture yielded

2,2-dimethylpent-4-enal ( $53.6 \mathrm{~g}, 48 \%$ ), with a further 15 g contaminated with $p$-cymene (total yield $60 \%$ ).

## 2,2-Dimethylpent-4-en-1-ol 5a ${ }^{24}$

2,2-Dimethylpent-4-enal 4 ( $11.2 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in aq. ethanol was reduced with sodium borohydride $(1.4 \mathrm{~g}, 0.037 \mathrm{~mol})$ in 0.2 M aq. NaOH . Fractional distillation of the crude product gave 2,2-dimethylpent-4-en-1-ol $5 \mathrm{a}(8.2 \mathrm{~g}, 72 \%)$, bp $54^{\circ} \mathrm{C}(22 \mathrm{mmHg})$ or $154{ }^{\circ} \mathrm{C}(760 \mathrm{mmHg}) .{ }^{25}$

## 5-Bromo-4,4-dimethylpent-1-ene $\mathbf{6 a}^{25,26}$

2,2-Dimethylpent-4-en-1-ol 5 ( $6.6 \mathrm{~g}, 58.0 \mathrm{mmol}$ ), was treated with carbon tetrabromide ( $20.0 \mathrm{~g}, 60.5 \mathrm{mmol}$ ) and triphenylphosphine ( $15.9 \mathrm{~g}, 60.5 \mathrm{mmol}$ ) in acetonitrile ( $150 \mathrm{~cm}^{3}$ ) using the procedure of Hooz and Gilani. ${ }^{26}$ The crude product was purified by column chromatography (light petrol) to give 5-bromo-4,4-dimethylpent-1-ene $\mathbf{6 a}$ ( $11.6 \mathrm{~g}, 91 \%$ by ${ }^{1} \mathrm{H}$ NMR analysis) contaminated with bromoform.

## 2-(3-Bromo-2,2-dimethylpropyl)oxirane 7a

5-Bromo-4,4-dimethylpent-1-ene $\mathbf{6 a}(9.3 \mathrm{~g}, 52.6 \mathrm{mmol})$ was oxidised with $m$-chloroperoxybenzoic acid ( $11.8 \mathrm{~g}, 58 \mathrm{mmol}$ ) in DCM $\left(150 \mathrm{~cm}^{3}\right)$ over 15 h at room temp. The excess of peracid was destroyed with sodium sulfite. The crude product was purified by column chromatography (light petrol:ether, $8: 1$ ) to give a colourless syrup. This was flash distilled (bp $42^{\circ} \mathrm{C}$ at 0.3 mmHg ) to yield 2-(3-bromo-2,2-dimethylpropyl) oxirane 7a (5.4 g, 73\%) as a viscous, colourless oil (Found: C, 43.71; H, 6.86; $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{BrO}$ requires C, $43.54 ; \mathrm{H}, 6.79 \%$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3050$, 1261 and $666(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Br}\right.$, $J 10.1)$, $3.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Br}, J 10.1\right), 3.28-3.34(1 \mathrm{H}$, dddd, CHOC, $J 4.0,4.6,7.2$ and 5.1 ), $3.09-3.15\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{O}, J 4.0\right.$ and 2.7), 2.76-2.84 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{O}, J 2.7$ and 5.1), 2.02-2.09 $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 4.6\right.$ and 14.3$)$, $1.75-1.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 7.2\right.$ and 14.3), $1.50\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 48.8(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 46.4$ ( $\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}$ ), 46.2 ( $\mathrm{t}, \mathrm{CH}_{2}$ ), 42.6 (d, CH), 34.8 ( s , $\mathrm{CMe}_{2}$ ), $26.1\left(\mathrm{q}, \mathrm{Me}_{2}\right) ; m / z$ (EI) $177\left(10 \% \mathrm{M}^{+}-\mathrm{Me}\right), 135(60)$, 113 (10), 55 (100), 41 (95).

## 4-(3-Bromo-2,2-dimethylpropyl)-2,2-dimethyl-1,3-dioxolane 8a

A solution of 2-(3-bromo-2,2-dimethylpropyl)oxirane ( 2.01 g , 10.4 mmol ) in acetone ( $8 \mathrm{~cm}^{3}$ ) was flushed with dry nitrogen for 15 min and cooled to $-75^{\circ} \mathrm{C}$. Boron trifluoride-diethyl ether ( $300 \mu \mathrm{l}$ ) was added and the resulting solution was stirred at $-75^{\circ} \mathrm{C}$ for 5 h . A solution of $0.1 \mathrm{M} \mathrm{NaOH}\left(15 \mathrm{~cm}^{3}\right)$ was added and, after vigorous agitation, the acetone was removed under
reduced pressure. Ether $\left(15 \mathrm{~cm}^{3}\right)$ was added and the organic layer was separated, washed with 0.1 M NaOH solution, water and brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and the solvent removed. The product was purified by column chromatography (light petrol:ether, 8:1) to give 4-(3-bromo-2,2-dimethylpropyl)-2,2-dimethyl-1,3dioxolane $8 \mathrm{a}(1.66 \mathrm{~g}, 64 \%)$ as a colourless oil (Found: C, 47.75; $\mathrm{H}, 7.29 ; \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{BrO}_{2}$ requires C, $47.82 ; \mathrm{H}, 7.62 \%$ ); $v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 1380,1155$ and $656 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.09-4.19(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}, J 5.8,7.6,7.8$ and 4.0$), 4.05\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{O}, J 5.8\right.$ and $7.6), 3.46\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J 7.6\right), 3.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Br}, J 10.0\right), 3.35$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Br}, J 10.0\right), 1.64\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.4\right.$ and 7.8$), 1.60$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.4\right.$ and 4.0$), 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.34(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 108.9 (s, $\mathrm{O}_{2} \mathrm{CMe}_{2}$ ), 73.1 (d, CH), 70.4 (d, $\mathrm{CH}_{2} \mathrm{O}$ ), 46.8 ( t , $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 43.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 34.4$ (s, $\mathrm{CMe}_{2}$ ), 27.0 (q, Me), 26.8 (q, Me), 26.1 (q, Me), 26.0 (q, Me); $m / z$ (EI) 251 ( $10 \%$, MH $^{+}$), 235 (80), 175 (20), 135 (20), 95 (100).

## 4,5-Dihydroxy-2,2-dimethyl-4,5-di- $O$-isopropylidenepentyl-

 (pyridine)bis(dimethylglyoximato(1-)-N, $N^{\prime}$ )cobalt 9aBromo(pyridine)bis(dimethylglyoximato(1-)- $N, N^{\prime}$ )cobalt ( $0.52 \mathrm{~g}, 1.2 \mathrm{mmol}$ ) was suspended in ethanol $\left(40 \mathrm{~cm}^{3}\right)$ in a Schlenk tube, degassed and flushed with nitrogen for 1 h . Sodium borohydride ( $0.13 \mathrm{~g}, 3.4 \mathrm{mmol}$ ) was added as a suspension in ethanol ( $2 \mathrm{~cm}^{3}$ ) and the mixture was stirred for 1 h until a homogeneous dark brown-green solution was obtained. To this solution, 4-(3-bromo-2,2-dimethylpropyl)-2,2-dimethyl-1,3-dioxolane $\mathbf{8 a}(0.16 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added, and the resultant solution was protected from light and stirred at room temp. for 12 h . Air was bubbled through the clear orange solution for 30 min before water $\left(100 \mathrm{~cm}^{3}\right)$ was added and the product alkylcobaloxime was extracted into ethyl acetate. The combined organic extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and the solvent removed. The residue was dissolved in a minimum amount of DCM and purified by column chromatography (96:3:1 DCM-methanolpyridine). Product-containing fractions were combined and the solvent was removed. The residue was subjected to high vacuum to remove traces of pyridine. Alkylcobaloxime $\mathbf{9 a}$ ( 0.12 $\mathrm{g}, 35 \%$ ) was isolated as an orange-yellow crystalline solid (Found: C, $51.05 ; \mathrm{H}, 6.81 ; \mathrm{N}, 12.78 ; \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{CoN}_{5} \mathrm{O}_{6}$ requires C, $51.20 ; \mathrm{H}, 7.10 ; \mathrm{N}, 12.98 \%$ ); $v_{\text {max }}$ (disc)/ $\mathrm{cm}^{-1} 3150$ (br) and 1234 (s); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.47(2 \mathrm{H}, \mathrm{d}, \alpha-\mathrm{pyr}, J 4.9), 7.65(1 \mathrm{H}, \mathrm{t}$, $\gamma$-pyr, $J 6.0$ ), $7.25(2 \mathrm{H}, \mathrm{t}, \beta-\mathrm{pyr}, J 4.2), 3.93-4.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.30(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 9.9), 2.06(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe} 2), 2.05(6 \mathrm{H}$, $\mathrm{s}, \mathrm{dmgMe}), 1.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CoCH}_{2}, J 9.0\right), 1.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CoCH}_{2}\right.$, $J 9.0), 1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 0.73 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 0.69 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.2$ (C=N), 150.1 ( $\mathrm{C}=\mathrm{N}$ ), 149.4 ( $\alpha$-pyr), 137.5 ( $\gamma$-pyr), 125.1 ( $\beta$-pyr), $107.7\left(\mathrm{O}_{2} \mathrm{CMe}_{2}\right), 73.9(\mathrm{CHO}), 70.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 46.1\left(\mathrm{CH}_{2}\right), 42.2$ $\left(\mathrm{CoCH}_{2}\right), 38.5\left(\mathrm{CMe}_{2}\right), 28.8(\mathrm{Me}), 28.5(\mathrm{Me}), 27.1(\mathrm{Me}), 26.1$ (Me), $12.1\left(\mathrm{dmgMe}_{4}\right) ; m / z(\mathrm{FAB}) 540\left(\mathrm{MH}^{+}\right), 539,461,290$ (100\%).

## 4,5-Dihydroxy-2,2-dimethylpentyl(pyridine)bis(dimethylglyoximato( $1-$ )- $N, N^{\prime}$ )cobalt 1a

4,5-Dihydroxy-2,2-dimethyl-4,5-di- $O$-isopropylidenepentyl(pyridine)bis(dimethylglyoximato( $1-$ )- $N, N^{\prime}$ )cobalt 9a ( 0.16 g , $0.3 \mathrm{mmol})$ was dissolved in ethanol $\left(3 \mathrm{~cm}^{3}\right)$ and $2 \mathrm{M} \mathrm{HCl}(0.45$ $\mathrm{cm}^{3}$ ) was added. The solution was stirred in the dark at room temp for 5 h . The solvent was removed and the residue was subjected to column chromatography (90:9:1, DCM-methanol-pyridine). After removal of the solvent, traces of pyridine were removed under high vacuum to give the diolcobaloxime 1a ( $0.11 \mathrm{~g}, 82 \%$ ) as an orange crystalline solid (Found: C, $48.61 ; \mathrm{H}, 6.57 ; \mathrm{N}, 13.80 ; \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{CoN}_{5} \mathrm{O}_{6}$ requires C, 48.10; H, 6.86; N, 14.02\%); $v_{\max }$ (disc)/cm ${ }^{-1} 3406 \mathrm{br}, 2910-2950$ and $1560 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.46(2 \mathrm{H}, \mathrm{d}, \alpha-\mathrm{pyr}), 7.68(1 \mathrm{H}, \mathrm{t}$, $\gamma$-pyr), 7.27 ( $2 \mathrm{H}, \mathrm{t}, \beta$-pyr), $3.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.48(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{CH}_{2} \mathrm{OH}, J 11.0$ and 3.3 ), $3.30\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{OH}, J 11.0\right.$ and 7.9$)$,
$\left.\left.2.09(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe})_{2}\right), 2.07(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe})_{2}\right), 1.98(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{CoCH}_{2}, J 8.9\right), 1.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CoCH}_{2}, J 8.8\right), 1.46\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}\right.$, $J 14.8$ and 6.1$), 1.18\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.5\right.$ and 4.3$), 0.73(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.05(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 0.63(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 151.1(\mathrm{C}=\mathrm{N}), 150.7(\mathrm{C}=\mathrm{N}), 149.5$ ( $\alpha$-pyr), 137.6 $\left(\gamma\right.$-pyr), $125.2(\beta$-pyr $), 69.9(\mathrm{CHOH}), 68.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 45.2$ $\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CoCH}_{2}\right), 38.7\left(\mathrm{CMe}_{2}\right), 29.6(\mathrm{Me}), 29.2(\mathrm{Me}), 12.3$ $\left(\mathrm{dmgMe}_{2}\right), 12.2(\mathrm{dmgMe} 2) ; m / z(\mathrm{FAB}) 500\left(10 \%, \mathrm{MH}^{+}\right), 421$, 420, 368, 290 (100), 289 (94).

## Prop-2-enyl 2-methylpropionate 10a ${ }^{27}$

Prop-2-enyl 2-methylpropionate was prepared from allyl alcohol $3 \mathrm{aa}\left(3.00 \mathrm{~g}, 3.51 \mathrm{~cm}^{3}, 0.05 \mathrm{~mol}\right)$ and isobutyryl chloride ( $5.54 \mathrm{~g}, 5.48 \mathrm{~cm}^{3}, 0.05 \mathrm{~mol}$ ) according to the procedure of Arnold and Kulenovic: ${ }^{27}$ colourless oil ( $6.77 \mathrm{~g}, 99 \%$ ); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2978,1738$ and 1650; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.78-5.97$ (m, $1 \mathrm{H},=\mathrm{CH}-), 5.14-5.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 4.51-4.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.53(1 \mathrm{H}$, quintet, $\mathrm{CH}, J 7.0), 1.14\left(6 \mathrm{H}, \mathrm{d}, \mathrm{Me}_{2}, J 7.0\right)$; $\delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 176.8(\mathrm{COO}), 132.4(=\mathrm{CH}), 117.8\left(=\mathrm{CH}_{2}\right), 64.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 34.0(\mathrm{CH}), 19.0\left(\mathrm{Me}_{2}\right) ; m / z(\mathrm{EI}) 128.085\left(\mathrm{M}^{+}, \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}\right.$ requires 128.084 ) $128\left(10 \%, \mathrm{M}^{+}\right), 71(20), 57(40)$.

## [1,1- ${ }^{2} \mathbf{H}_{2}$ ]Prop-2-en-1-ol 3b ${ }^{27}$

[1, $1-{ }^{2} \mathrm{H}_{2}$ ]Prop-2-en-1-ol was prepared ${ }^{19}$ by reduction with lithium aluminium deuteride ( $5.0 \mathrm{~g}, 0.2 \mathrm{mmol}$ ) of acryloyl chloride ( $16.2 \mathrm{~g}, 0.2 \mathrm{mmol}$ ) to give the deuteriated allyl alcohol 3b $(6.7 \mathrm{~g}, 62 \%)$, which was used without further purification; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3370,2964,2934$ and $1035 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.8-6.1(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 5.0-5.3\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 2.0-2.2$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 137.3(\mathrm{CH}), 115.4\left(\mathrm{CH}_{2}\right)$, 63.2 ( $\mathrm{t}, \mathrm{CD}_{2}$ ).

## [1,1- ${ }^{2} \mathrm{H}_{2}$ ]Prop-2-enyl 2-methylpropionate 10b

[1, $1-{ }^{2} \mathrm{H}_{2}$ ]Prop-2-enyl 2-methylpropionate 10b was prepared from $\left[1,1-{ }^{2} \mathrm{H}_{2}\right]$ prop-2-en-1-ol $\mathbf{3 b}$ in the same manner as 10a. The title compound $\mathbf{1 0 b}$ was obtained as a colourless oil $(6.61 \mathrm{~g}$, $88 \%$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2976,1736$ and $1645 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.67-5.96(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}-), 5.15-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right)$, 2.45-2.70 (1H, quintet, CH, $J 7.0$ ), $1.16\left(6 \mathrm{H}, \mathrm{d}, \mathrm{Me}_{2}, J 7.0\right)$, the methylene multiplet at $\delta 4.5$ was not present; $\delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 176.7(\mathrm{COO}), 132.4(=\mathrm{CH}), 118.0\left(=\mathrm{CH}_{2}\right), 64.9\left(\mathrm{CD}_{2} \mathrm{O}\right)$, $34.0(\mathrm{CH}), 19.0\left(\mathrm{Me}_{2}\right) ; m / z(\mathrm{EI}) 130.0963\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{10}{ }^{2} \mathrm{H}_{2} \mathrm{O}_{2}\right.$ requires 130.0962 ), 130 ( $15 \%$ ), 71 (100), 43 (100).

## 2,2-Dimethylpent-4-enoic acid 11a ${ }^{20,28}$

Prop-2-enyl 2-methylpropionate $\mathbf{1 0 a}\left(1.28 \mathrm{~g}, 10 \mathrm{mmol}, 1.4 \mathrm{~cm}^{3}\right)$ was subjected to a Claisen rearrangement according to the procedure of Ireland et al. ${ }^{20}$ to yield the carboxylic acid 11a $(0.53 \mathrm{~g}, 41 \%)$ as a colourless oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 11.4$ $11.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 5.60-5.80(1 \mathrm{H}, \mathrm{m}$, vinylic CH$), 4.95-$ $5.06\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 2.20-2.25\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{2}, J 7.4\right.$ and 0.9$), 1.12$ ( $6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}$ ).

## [5,5- ${ }^{2} \mathrm{H}_{2}$ ]-2,2-Dimethylpent-4-enoic acid 11b

[ $5,5-{ }^{2} \mathrm{H}_{2}$ ]-2,2-Dimethylpent-4-enoic acid 11b was prepared from [1, $1-{ }^{-} \mathrm{H}_{2}$ ] prop-2-enyl 2-methylpropionate $\mathbf{1 0 b}$ in the same manner as 11a yielding the title compound ( $2.63 \mathrm{~g}, 40 \%$ ) as a pale yellow oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3100,1703$ and $1603 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.25-11.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}), 5.6-5.7(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $=\mathrm{CH}), 2.4-2.6\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 2.1\left(2 \mathrm{H}, \mathrm{d},-\mathrm{CH}_{2}, J 7.4\right), 1.1(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}_{2}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 184.6(\mathrm{COOH}), 133.7(\mathrm{CH}=), 44.3$ $\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CMe}_{2}\right), 24.6\left(\mathrm{Me}_{2}\right) ; m / z(\mathrm{EI}) 130.0982\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{7} \mathrm{H}_{10}{ }^{2} \mathrm{H}_{2} \mathrm{O}_{2}$ requires 130.0962 ), 130.1 ( $7 \%$ ), 115 (25), 85 (100), 43 (60).

## [5,5- ${ }^{2} \mathbf{H}_{2}$ ]-2,2-Dimethylpent-4-en-1-ol 5b

[5,5- ${ }^{2} \mathrm{H}_{2}$ ]-2,2-Dimethylpent-4-enoic acid 11b ( $2.65 \mathrm{~g}, 20.3$
mmol ) in ether ( $20 \mathrm{~cm}^{3}$ ) was reduced with lithium aluminium hydride ( $2.40 \mathrm{~g}, 63 \mathrm{mmol}$ ) in ether ( $80 \mathrm{~cm}^{3}$ ) to yield the alcohol $\mathbf{5 b}(1.9 \mathrm{~g}, 80 \%)$ as a colourless oil; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3400$ and $1050 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.73-5.83(1 \mathrm{H}, \mathrm{br} \mathrm{t},=\mathrm{CH}), 3.27$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 1.96\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 1.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 0.84(6 \mathrm{H}$, $\left.\mathrm{s}, \quad \mathrm{Me}_{2}\right) ; \quad m / z$ (EI) $117.1241\left(\mathrm{MH}^{+}, \mathrm{C}_{7} \mathrm{H}_{13}{ }^{2} \mathrm{H}_{2} \mathrm{O}\right.$ requires 117.1248), 117 ( $15 \%$ ), 116 (5), 73 (100), 43 (95).

## [1,1- ${ }^{2} \mathbf{H}_{2}$ ]-5-Bromo-4,4-dimethylpent-1-ene 6 b

This compound was synthesised from $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]-2,2-$ dimethylpent-4-en-1-ol $\mathbf{5 b}$ in the manner of $\mathbf{6 a}(1.9 \mathrm{~g}, 50 \%$ by NMR analysis); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2924$ and 1653; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.69-5.78(1 \mathrm{H}, \mathrm{br} \mathrm{t},=\mathrm{CH}), 3.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.07$ ( $2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}, J 7.5$ ), $0.99\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right)$; $m / z(\mathrm{EI}) 178\left(5 \%, \mathrm{M}^{+}\right)$, 135 (60), 99 (64), 55 (100).

## [3,3- ${ }^{2} \mathbf{H}_{2}$ ]-2-(3-Bromo-2,2-dimethylpropyl)oxirane 7b

[3,3- $\left.{ }^{2} \mathrm{H}_{2}\right]$-2-(3-Bromo-2,2-dimethylpropyl)oxirane $7 \mathbf{b}$ was synthesised from $\left[1,1-^{-2} \mathrm{H}_{2}\right]$-5-bromo-4,4-dimethylpent-1-ene $\mathbf{6 b}$ in the manner of 7a. Distillation under reduced pressure (bp $42^{\circ} \mathrm{C}$ at 0.3 mmHg$)$ yielded the deuteriated bromo epoxide $7 \mathrm{~b}(1.1 \mathrm{~g}$, $52 \%$ ) as a colourless oil; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3046,1267$ and 663 ; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.37(1 \mathrm{H}, \mathrm{d}, \mathrm{CHBr}, J 10.1), 3.32(1 \mathrm{H}, \mathrm{d}$, CH'Br, $J$ 10.1), 2.93 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{CHO}, J 4.7$ and 7.2 ), 1.6-1.75 $(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}, J 4.7$ and 14.3$), 1.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}^{\prime}, J 7.2\right.$ and 14.3), $1.1\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 48.2\left(\mathrm{CH}_{2} \mathrm{Br}\right), 46.4$ $\left(\mathrm{CH}_{2}\right), 42.7(\mathrm{CH}), 34.6\left(\mathrm{CMe}_{2}\right), 26.2\left(\mathrm{Me}_{2}\right)$.

## [5,5-2 ${ }^{2} \mathrm{H}_{2}$ ]-4-(3-Bromo-2,2-dimethylpropyl)-2,2-dimethyl-1,3dioxolane 8b

This was synthesised from $\left[3,3-{ }^{2} \mathrm{H}_{2}\right]$-2-(3-bromo-2,2dimethylpropyl)oxirane $\mathbf{7 b}$ in the manner of $\mathbf{8 a}$ to yield the deuteriated bromo acetal $\mathbf{8 b}(0.84 \mathrm{~g}, 53 \%)$ as a colourless oil; $\delta_{\mathrm{H}}$ ( $200 \mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) 4.1 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{CHO}$ ), $3.3\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 1.6-$ $1.8\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.2\right.$ and 7.8$), 1.4-1.6\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.2\right.$ and 4.0), $1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 108.9\left(\mathrm{O}_{2} \mathrm{CMe}_{2}\right), 73.1$ $(\mathrm{CH}), 46.8\left(\mathrm{CH}_{2} \mathrm{Br}\right), 43.2\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CMe}_{2}\right), 27.0(\mathrm{Me}), 26.8$ (Me), 26.1 (Me), $26.0(\mathrm{Me})$.
[5,5- $\left.{ }^{2} \mathrm{H}_{2}\right]$ ]-4,5-Dihydroxy-2,2-dimethyl-4,5-di- $O$-isopropylidenepentyl(pyridine)bis(dimethylglyoximato( $1-$ )- $N, N^{\prime}$ )cobalt 9b
This was synthesised from $\left[5,5-{ }^{2} \mathrm{H}_{2}\right]$-4-(3-bromo-2,2-dimeth-ylpropyl)-2,2-dimethyl-1,3-dioxolane $\mathbf{8 b}$ in the manner of $\mathbf{9 a}$ to yield the deuteriated alkyl-cobaloxime 9b $(0.12 \mathrm{~g}, 35 \%)$ as orange plates; $v_{\text {max }}(\mathrm{disc}) / \mathrm{cm}^{-1} 2955$ and $1240 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 8.5(2 \mathrm{H}, \mathrm{m}, \alpha$-pyr), $7.65(1 \mathrm{H}, \mathrm{t}, \gamma-\mathrm{pyr}), 7.25(2 \mathrm{H}, \mathrm{t}$, $\beta$-pyr), $3.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 2.07(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe} 2), 2.06(6 \mathrm{H}, \mathrm{s}$, dmgMe 2 ), $1.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CoCH}_{2}, J 8.8\right), 1.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CoCH}_{2}\right.$, $J 8.8), 1.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.77$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz} ; \mathrm{MeOH}) 150.7$ $(\mathrm{C}=\mathrm{N}), 149.1$ ( $\alpha$-pyr), 139.8 ( $\gamma$-pyr), 126.9 ( $\beta$-pyr), 110.4 $\left(\mathrm{O}_{2} \mathrm{CMe}_{2}\right), 75.6(\mathrm{CHO}), 45.2\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CMe}_{2}\right), 27.7(\mathrm{Me})$, $27.4(\mathrm{Me}), 26.7(\mathrm{Me}), 26.6(\mathrm{Me}), 12.7\left(\mathrm{dmgMe}_{4}\right)$ [NB the expected resonance for $\mathrm{CD}_{2} \mathrm{OH}$ was not identified]; $m / z(\mathrm{FAB})$ $542\left(\mathrm{MH}^{+}\right), 541,463,290$.

## [5,5- ${ }^{2} \mathbf{H}_{2}$ ]-4,5-Dihydroxy-2,2-dimethylpentyl(pyridine)bis-(dimethylglyoximato(1-)-N, $N^{\prime}$ )cobalt 1 b

This compound was prepared from $\mathbf{9 b}$ in the manner of $\mathbf{1 a}$ to give the deuteriated diol-cobaloxime $\mathbf{1 b}(75 \mathrm{mg}, 57 \%)$ as orange plates; $v_{\text {max }}(\mathrm{disc}) / \mathrm{cm}^{-1} 3410 \mathrm{br}, 2928,1562,1446$ and 1237; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.5-8.55(2 \mathrm{H}, \mathrm{d}, \alpha-\mathrm{pyr}), 7.75(1 \mathrm{H}, \mathrm{t}$, $\gamma$-pyr), $7.25(2 \mathrm{H}, \mathrm{t}, \beta$-pyr), $3.5(1 \mathrm{H}$, br t, CHOH, J 5.1), 2.22 $(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe} 2), 2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe}_{2}\right), 2.07-2.10(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}-$ Co, $J 11.0$ ), $1.45-1.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}^{\prime}-\mathrm{Co}, J 11.0\right)$, $1.4(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.2\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}^{\prime}{ }_{2}\right), 0.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
$\delta_{\mathrm{C}}\left(120 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 150.1(\mathrm{C}=\mathrm{N}), 149.3$ ( $\alpha$-pyr), 137.5 ( $\gamma$-pyr), 125.1 ( $\beta$-pyr), $69.6(\mathrm{CHOH}), 44.6\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{br}, \mathrm{CoCH}_{2}\right), 38.5$ ( $\mathrm{CMe}_{2}$ ), $29.9(\mathrm{Me}), 29.8(\mathrm{Me}), 12.2\left(\mathrm{dmgMe}_{2}\right), 12.1\left(\mathrm{dmgMe}_{2}\right)$ [ NB the expected resonance for $\mathrm{CD}_{2} \mathrm{OH}$ was not identified]; $\mathrm{m} / \mathrm{z}$ (FAB) $502\left(\mathrm{MH}^{+}\right), 423,422,368,290(100 \%), 289$.

## 1-[tert-Butyl(dimethyl)silyloxy]-2,2-dimethylpent-4-ene 12

2,2-Dimethylpent-4-en-1-ol 5 5 ( $13.7 \mathrm{~g}, \quad 0.1 \mathrm{~mol}$ ), tertbutyldimethylsilyl chloride ( $25.0 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) and imidazole ( 11.3 $\mathrm{g}, 0.2 \mathrm{~mol}$ ) in dimethylformamide $\left(100 \mathrm{~cm}^{3}\right)$ were stirred under a nitrogen atmosphere overnight ( 18 h ). Work-up was carried out in the usual manner. ${ }^{29}$ The crude product was purified by flash column chromatography (light petrol) and the solvent was removed to yield the title compound $12(27.4 \mathrm{~g}, 100 \%)$ as a colourless liquid; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2957,1641$ and $1257 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.68-5.89(1 \mathrm{H}, \mathrm{m}, \mathrm{RCH}=), 4.92-4.97(2 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CH}_{2}\right), 3.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 1.96\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{CH}_{2}, J 4.3\right.$ and 1.10$)$, $0.87\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{2}\right) ; \delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 135.8(\mathrm{RC=}), 116.7\left(=\mathrm{CH}_{2}\right), 71.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 43.2$ $\left.\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CMe}_{2}\right), 26.0(\mathrm{SiCMe})_{3}\right), 24.0\left(\mathrm{Me}_{2}\right), 18.3\left(\mathrm{SiCMe}_{3}\right)$, $-5.5\left(\mathrm{SiMe}_{2}\right) ; m / z(\mathrm{EI}) 228\left(10 \%, \mathrm{M}^{+}\right), 97(45)$.

## 1-[tert-Butyl(dimethyl)silyloxy]-2,2-dimethylpentan-5-ol 13 ${ }^{30,31}$

Hydroboration of 1-[tert-butyl(dimethyl)silyloxy]-2,2-dimethyl-pent-4-ene $\mathbf{1 2}(2.05 \mathrm{~g}, 9.0 \mathrm{mmol})$ in tetrahydrofuran $\left(10 \mathrm{~cm}^{3}\right)$ was achieved with disiamylborane (1,2-dimethylpropylborane). ${ }^{30}$ Work-up and oxidation was carried out using the procedure of Brown et al. ${ }^{31}$ The crude product was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield the alcohol $13(1.7 \mathrm{~g}, 82 \%)$ as a colourless oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right.$, $J 6.7), 3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right), 1.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.50-1.61$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.11-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.87\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.81$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 71.4$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 63.9\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 35.0\left(\mathrm{CMe}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{Me}_{2}\right), 24.1\left({ }^{( } \mathrm{Bu}\right), 18.3\left(\mathrm{SiCMe}_{3}\right),-5.5\left(\mathrm{SiMe}_{2}\right)$.

## 5-[tert-Butyl(dimethyl)silyloxy]-4,4-dimethylpentanal 14

Swern oxidation of 1-[tert-butyl(dimethyl)silyloxy]-2,2-dimethylpentan-5-ol $13(3.78 \mathrm{~g}, 15.4 \mathrm{mmol})$ in DCM $\left(10 \mathrm{~cm}^{3}\right)$ with oxalyl chloride ( $2.2 \mathrm{~g}, 1.5 \mathrm{~cm}^{3}, 17 \mathrm{mmol}$ ) and dimethyl sulfoxide ( $2.6 \mathrm{~g}, 2.4 \mathrm{~cm}^{3}, 34 \mathrm{mmol}$ ) in DCM $\left(45 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C},{ }^{32}$ followed by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the crude product, yielded the aldehyde $14(2.0 \mathrm{~g}, 53 \%)$ as a colourless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2930$ and 1713; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 9.73(1 \mathrm{H}$, br t, CHO$), 3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}, 2.33-2.40\right.$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ ), 1.5-1.7 ( $2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}, J 8.2$ ), $0.86\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right),-0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$.

## 1-[tert-Butyl(dimethyl)silyloxy]-5-hydroxy-2,2-dimethyl-6nitrohexane $15^{33}$

5-[tert-Butyl(dimethyl)silyloxy]-4,4-dimethylpentanal 14 (2.01 $\mathrm{g}, 8.2 \mathrm{mmol})$ and nitromethane $(0.50 \mathrm{~g}, 8.2 \mathrm{mmol})$ in ethanol $\left(4 \mathrm{~cm}^{3}\right)$ were cooled in an ice bath and sodium hydroxide solution ( $0.9 \mathrm{~cm}^{3}, 10 \mathrm{M}, 9 \mathrm{mmol}$ ) was added dropwise over 30 min . The reaction mixture was stirred for 3 h on an ice bath then acetic acid solution $\left(10 \mathrm{~cm}^{3}, 1 \mathrm{M}\right)$ was added. The ethanol was removed under reduced pressure and the aq. residue was extracted with ethyl acetate. The combined organic extracts were washed with sodium hydroxide solution ( 0.1 M ), brine, and dried. Removal of the solvent and purification of the residue by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the nitro alcohol $15(1.8 \mathrm{~g}, 77 \%)$ as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3435, 2955, 1556, 1363 and 1099; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.3-4.5$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NO}_{2}\right), 4.1-4.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.2(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 2.4(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.2-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.89$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}}{ }^{\mathrm{Bu}}\right), 0.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 80.6\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right), 71.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 69.5\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 35.0$ $\left(\mathrm{CMe}_{2}\right), 33.9\left(\mathrm{CHOHCH}_{2}\right), 28.5\left(\mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right), 25.9(\mathrm{OSi}-$

CMe $)_{3} 24.2\left(\mathrm{CMe}_{2}\right), 24.0\left(\mathrm{CMe}_{2}\right), 18.3\left(\mathrm{SiCMe}_{3}\right),-5.5$ $\left(\mathrm{Si} M e_{2}\right) ; m / z$ (EI) $306.211\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}\right.$ requires 306.210), 306 (20\%).

## 6-Amino-1-[tert-butyl(dimethyl)silyloxy]-5-hydroxy-2,2dimethylhexane 16

To a solution of 1-[tert-butyl(dimethyl)silyloxy]-5-hydroxy-2,2-dimethyl-6-nitrohexane $15(6.31 \mathrm{~g}, 21.8 \mathrm{mmol})$ in ethanol ( 125 $\mathrm{cm}^{3}$ ) was added a slurry of palladium supported on charcoal $(10 \%, 3.0 \mathrm{~g}, 14 \mathrm{~mol} \%)$ in ethanol $\left(80 \mathrm{~cm}^{3}\right)$. The reaction mixture was degassed by stirring under water pump vacuum, then the vacuum was replaced by a hydrogen atmosphere at atmospheric pressure. The reaction mixture was stirred for 24 h , after which time the hydrogen atmosphere was removed. Filtration of the crude reaction mixture through Celite, removal of the solvent and flash column chromatography (DCM-methanol-aq. ammonia, $8: 1: 0.1$ ) of the crude product yielded the amino alcohol $16(3.5 \mathrm{~g}, 65 \%)$ as a viscous oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3354$, 2955, 2930, 1591, 1473 and 1099; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 3.5(1 \mathrm{H}$, br s, OH), $3.3\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 3.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right), 2.9(1 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, \mathrm{C} H-\mathrm{NH}_{2}\right), 2.6\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{C} H-\mathrm{NH}_{2}\right), 1.1-1.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.9\left(9 \mathrm{H}, \mathrm{s}\right.$, ${ }^{\text {'Bu }}$ ), $0.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.0\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 72.1(\mathrm{CHOH}), 71.1\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 46.9\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 35.0$ $\left(\mathrm{CMe}_{2}\right), 34.5\left(\mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right), 29.3\left(\mathrm{CHOHCH}_{2} \mathrm{CH}_{2}\right), 25.9$ ( $\mathrm{SiCMe}_{3}$ ), $24.3(\mathrm{Me}), 23.9(\mathrm{Me}), 18.3\left(\mathrm{SiCMe}_{3}\right),-5.4\left(\mathrm{SiMe}_{2}\right)$; $\mathrm{m} / \mathrm{z}$ (EI) $276.2361\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}\right.$ requires 276.2354), 276 (25\%), 245 (40), 218 (60).

## 5-\{4-[tert-Butyl(dimethyl)silyloxy]-3,3-dimethylbutyl\}-1,3-oxazolidin-2-one 17

A solution of 6-amino-1-[tert-butyl(dimethyl)silyloxy]-5-hydroxy-2,2-dimethylhexane $\mathbf{1 6}(1.27 \mathrm{~g}, 4.6 \mathrm{mmol})$ and triethylamine ( $3.7 \mathrm{~g}, 5.13 \mathrm{~cm}^{3}, 37 \mathrm{mmol}, 8 \mathrm{~mol}$ equiv.) in DCM ( $12 \mathrm{~cm}^{3}$ ) was cooled in an ice bath. To this a solution of methyl chloroformate ( $2.16 \mathrm{~g}, 2.13 \mathrm{~cm}^{3}, 27.6 \mathrm{mmol}, 6 \mathrm{~mol}$ equiv.) was added dropwise over a period of 30 min , then the mixture was stirred at room temperature overnight. The reaction mixture was poured into dilute hydrochloric acid ( $1 \mathrm{M}, 50 \mathrm{~cm}^{3}$ ), the organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with 1 M hydrochloric acid, sodium bicarbonate solution, water, brine, and dried. Removal of the solvent yielded the intermediate 1-[tert-butyl(dimethyl) silyloxy]-5-hydroxy-2,2-dimethyl-6(methoxycarbonylamino) hexane ( $1.2 \mathrm{~g}, 75 \%$ ). A small portion of the crude product was purified by flash column chromatography (petrol-ethyl acetate, 3:1) to give a colourless oil which was characterised by ${ }^{1} \mathrm{H}$ NMR; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$, $5.1(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.6(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.2-3.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right), 2.9-3.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.1-1.5(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.9\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.0\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$.

To a solution of 1-[tert-butyl(dimethyl)silyloxy]-5-hydroxy-2,2-dimethyl-6-(methoxycarbonylamino)hexane ( $1.2 \mathrm{~g}, \quad 3.5$ mmol ) in tetrahydrofuran ( $10 \mathrm{~cm}^{3}$ ) was added sodium hydride $(0.2 \mathrm{~g}, 7.0 \mathrm{mmol})$. The reaction mixture was stirred under a nitrogen atmosphere for 4 h . Saturated ammonium chloride solution ( $20 \mathrm{~cm}^{3}$ ) was added cautiously, then the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed. The crude product was purified by flash column chromatography (petrol-ethyl acetate, 2:1) to yield the oxazolidinone $17(0.8 \mathrm{~g}, 75 \%)$ as a colourless solid, $\mathrm{mp} 85^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{disc}) / \mathrm{cm}^{-1}$ 3242, 3159, 2959, 1740 and 1097; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 6.25$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.4-4.5(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}, J 7.9), 3.64(1 \mathrm{H}, \mathrm{t}$, CHNH, $J 8.4$ ), $3.20\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}^{\prime} \mathrm{NH}, J 7.9\right), 3.20(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 1.5-1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 1.1-1.5(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 0.9\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.8\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right), 0.0(6 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{2}$ ); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ), $160.4(\mathrm{C}=\mathrm{O}), 77.9(\mathrm{CHO}), 71.2$ $\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 46.0\left(\mathrm{CH}_{2} \mathrm{NH}\right), 34.9\left(\mathrm{CMe}_{2}\right)$, $33.1\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 25.9\left(\mathrm{SiCMe}_{3}\right), 24.2(\mathrm{Me}), 24.0(\mathrm{Me})$,
$18.3\left(\mathrm{SiCMe}_{3}\right),-5.5\left(\mathrm{SiMe}_{2}\right) ; m / z$ (EI) $302.2161\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}$ requires 302.2154 ) $302\left(10 \%, \mathrm{MH}^{+}\right)$, 286 (10), 244 (80).

## 5-(4-Hydroxy-3,3-dimethylbutyl)-1,3-oxazolidin-2-one 18

To 5-\{4-[tert-butyl(dimethyl)silyloxy]-3,3-dimethylbutyl\}-1,3-oxazolidin-2-one $17(2.64 \mathrm{~g}, 8.8 \mathrm{mmol})$ in tetrahydrofuran ( 50 $\mathrm{cm}^{3}$ ) was added tetrabutylammonium fluoride ${ }^{29}$ as a solution in tetrahydrofuran ( $1.1 \mathrm{M}, 15 \mathrm{~cm}^{3}, 16.5 \mathrm{mmol}$ ) and the reaction mixture was stirred for 24 h , after which time TLC showed the absence of starting material. Water $\left(5 \mathrm{~cm}^{3}\right)$ was added and the tetrahydrofuran was removed. The aqueous component was extracted into DCM and the organic extracts were washed with water, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product was purified by flash column chromatography (ethyl acetate) to yield the alcohol $18(1.01 \mathrm{~g}, 62 \%)$ as a colourless solid, $\mathrm{mp} 72^{\circ} \mathrm{C}$; $v_{\text {max }}$ (disc) $/ \mathrm{cm}^{-1} 3317,2957,2872$ and 1745; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $6.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.5-4.7(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}, J 7.9), 3.65(1 \mathrm{H}, \mathrm{t}$, CHNH, J 8.4), 3.3 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$ ), $3.25\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}^{\prime} \mathrm{NH}, J 7.9\right)$, $2.9(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.5-1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH} \mathrm{CH}_{2}\right), 1.1-1.5$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}$ ), $0.95\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right.$ ); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ ), $160.6(\mathrm{C}=\mathrm{O}), 77.9(\mathrm{CHO}), 71.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 46.0\left(\mathrm{CH}_{2} \mathrm{NH}\right), 34.7$ $\left(\mathrm{CMe}_{2}\right), 32.9\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 29.5\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 24.0(\mathrm{Me})$, 23.8 (Me); $m / z$ (EI) $188.1279\left(\mathrm{MH}^{+}, \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{3}\right.$ requires 188.1286) 188 (50\%), 156 (40), 95 (90), 56 (100).

## 5-[3,3-Dimethyl-4-(trifluoromethylsulfonyloxy)butyl]-1,3-oxazolidin-2-one 19

A solution of 5-(4-hydroxy-3,3-dimethylbutyl)-1,3-oxazolidin-2-one $18(52.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ and triethylamine ( $30.9 \mathrm{mg}, 52$ $\mu 1,0.31 \mathrm{mmol})$ in DCM $\left(5 \mathrm{~cm}^{3}\right)$ was cooled to $-75^{\circ} \mathrm{C}$. To this solution was added trifluoromethanesulfonic anhydride (86.3 $\mathrm{mg}, 51 \mu \mathrm{l}, 0.31 \mathrm{mmol})$. The reaction was allowed to stir at this temperature for 15 min , then allowed to warm to room temperature. The reaction mixture was washed quickly with 0.1 M hydrochloric acid solution and dried $\left(\mathrm{MgSO}_{4}\right)$ to yield the triflate 19 ( $89 \mathrm{mg}, 100 \%$ ) which was used without further purification; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 6.2-6.4 ( $1 \mathrm{H}, \mathrm{br}$, NH ), $4.5-4.7(1 \mathrm{H}$, br m, CHO), 4.2 ( $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OTf}$ ), 3.6-3.8 ( 1 H , br t, CHNH), $3.1-3.3\left(1 \mathrm{H}, \mathrm{br}\right.$ t, $\left.\mathrm{CH}^{\prime} \mathrm{NH}\right), 1.5-1.8\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right)$, $1.2-1.5\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 1.0\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right)$.

## 2,2-Dimethyl-4-(2-oxo-1,3-oxazolidin-5-yl)butyl(pyridine)bis-(dimethylglyoximato(1-)- $N, N^{\prime}$ )cobalt 2a

The title compound 2a was synthesised from bromo(pyridine)bis(dimethylglyoximato( $1-$ )- $N, N^{\prime}$ )cobalt ( $0.25 \mathrm{~g}, 0.56 \mathrm{mmol}$ ), dimethylglyoxime ( 100 mg ), sodium borohydride ( $63 \mathrm{mg}, 1.7$ mmol ) and 5-[3,3-dimethyl-4-(trifluoromethylsulfonyloxy)-butyl]-1,3-oxazolidin-2-one 19 ( $89 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ in the same manner as 9 a. The product was extracted into DCM and the extracts were washed with water, brine, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Removal of the solvent and flash column chromatography (DCM-methanol-pyridine, $95: 2.5: 0.1$ ) of the residue, followed by exposure to high vacuum $(0.5 \mathrm{mmHg})$ to remove traces of pyridine, gave the alkylcobaloxime $\mathbf{2 a}$ as a red solid ( $110 \mathrm{mg}, 75 \%$ ); $v_{\text {max }}$ (disc) $/ \mathrm{cm}^{-1} 3306,2924$ and $1751 ; \delta_{\mathrm{H}}$ ( $500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$ ) 18.3 ( 2 H , br s, H bonded dmgOH), 8.55 ( 2 H , dd, $\alpha$-pyridine, $J 1.2$ and 6.35 ), $7.72(1 \mathrm{H}, \mathrm{tt}, \gamma$-pyridine, $J 1.5$ and 7.6$), 7.32(2 \mathrm{H}, \mathrm{m}, \beta$-pyridine, $J 1.2$ and 7.5$), 5.34(1 \mathrm{H}$, br s, NH), 4.65-4.60 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}, J 6.8$ and 7.3 ), $3.68(1 \mathrm{H}, \mathrm{t}$, CHNH, J 8.3), $3.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}^{\prime} \mathrm{NH}, J 7.9\right), 2.143(6 \mathrm{H}, \mathrm{s}$, dmgMe 2 ), $2.136\left(6 \mathrm{H}, \mathrm{s}, \mathrm{dmgMe}_{2}\right), 1.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CoCH}_{2}\right), 1.61-$ $1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.48-1.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}^{\prime}{ }_{2} \mathrm{CH}_{2}\right)$, $1.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.16\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{COCH}_{2} \mathrm{CH}_{2}, \mathrm{~J} 4.4\right.$ and 13.0), $0.74\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 159.8(\mathrm{C}=\mathrm{O})$, 149.3 ( $\alpha$-pyr), 137.4 ( $\gamma$-pyr), 125.2 ( $\beta$-pyr), 78.3 (CHO), 45.7 $\left(\mathrm{CH}_{2} \mathrm{NH}\right), 41.7\left(\mathrm{CoCH}_{2}\right), 36.6\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right), 28.2\left(\mathrm{Me}_{2}\right)$, $12.1\left(\mathrm{dmgMe}_{4}\right)$, $9.7\left(\mathrm{CHOCH}_{2} \mathrm{CH}_{2}\right)$.

## Thermolysis and photolysis of cobaloximes 1a and 1b

Reactions at pH 3 were carried out in 0.1 M aq. acetic acid, whilst reactions at pH 9 were performed in 0.01 M aq. sodium tetraborate. Samples for photolysis and thermolysis were prepared by dissolving the cobaloxime ( 50 mg ) in the appropriate solvent ( $50 \mathrm{~cm}^{3}$ ) and deoxygenated by bubbling nitrogen through the solution for 30 min .

Photolysis. The reaction flask was transferred to a water bath $\left(15^{\circ} \mathrm{C}\right)$ and photolysed at a distance of 2 cm from the light source (Hanovia medium pressure mercury lamp). Completion of photolysis at pH 3 was indicated by the absence of any yellow colour in the solution (about 20 min ). Photodecomposition at pH 9 took considerably longer (about $4 \frac{1}{2} \mathrm{~h}$ ) and was monitored to completion by TLC.

Thermolysis. The solution was heated at $100^{\circ} \mathrm{C}$ for 7 h , when TLC analysis indicated the absence of starting material.

Analysis. Following photolysis or thermolysis the solution was cooled. For some experiments starting from 1a the solution was extracted with ether and analysed by GC (comparison with authentic 4,4-dimethylpentanal 25a). In other experiments (starting from 1a or $\mathbf{1 b}$ ) the reaction mixture was poured into acidic $0.4 \% 2,4$-dinitrophenylhydrazine solution ${ }^{34}\left(50 \mathrm{~cm}^{3}\right)$ and stirred for 30 min . The DNP-derivative(s) was extracted into DCM $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were dried and evaporated to dryness to give a residue that was purified by column chromatography on silica ( 20 g , elution with $2: 1$ petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). The yellow band of aldehyde-DNP 26a was collected and the solvent was removed. The residue was taken up in spectroscopic grade ethanol and the absorbance of the solution was measured at $359.1 \mathrm{~nm}\left(\varepsilon 16000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ to give the yield of the DNP. Starting from 1a, the DNP was identified as 4,4-dimethylpentanal 2,4-dinitrophenylhydrazone 26a by comparison ( ${ }^{1} \mathrm{H}$ NMR and TLC) with an authentic sample. Starting from 1b, the DNP was identified as a mixture of [1,5- ${ }^{2} \mathrm{H}_{2}$ ]-4,4-dimethylpentanal 2,4-dinitrophenylhydrazone 26b and 3,3-dimethylbutanal 2,4-dinitrophenylhydrazone 33 by comparison ( ${ }^{1} \mathrm{H}$ NMR and TLC) with authentic samples of 33 and the unlabelled compound 26 a.

## Hydrolysis of the oxazolidinone-cobaloxime 2a and thermolysis of $\mathbf{2 b}$

Oxazolidinone-cobaloxime $\mathbf{2 a}$ ( $50 \mathrm{mg}, 0.09 \mathrm{mmol}$ ) was taken up in aq. lithium hydroxide $\left(1 \mathrm{M}, 10 \mathrm{~cm}^{3}\right)$ and stirred in the dark for 7 days, after which time TLC showed the absence of $\mathbf{2 a}$. The pH of the solution was adjusted to either 3 or 9 with acetic acid $(1 \mathrm{M})$, measured with a standardised pH meter, and the volume was made up to $50 \mathrm{~cm}^{3}$ with water. The solution was degassed by bubbling with argon for 1 h and processed further in the manner described for $\mathbf{1 a}$ and $\mathbf{1 b}$. The yield of ketone hydrazone 36 was calculated from the weight of the 2,4-dinitrophenylhydrazone produced after removal of solvent in vacuo ( 0.1 mmHg ). The DNP was identified as 5,5 -dimethylhexan-2-one 2,4-dinitrophenylhydrazone 36 by comparison (NMR and TLC) with an authentic sample.
The aqueous layer from preparation of 2,4-dinitrophenylhydrazone was basified to pH 14 and distilled. The distillate was made up to a known volume of water and aliquots were analysed for ammonia using the Nessler method, ${ }^{35}$ by measuring the absorbance at 525 nm .

## 5-Bromo-4,4-dimethylpentan-1-ol 20

The borane-tetrahydrofuran complex was assayed prior to use by reaction with glycerol in a gas burette.

Hydroboration of 5-bromo-4,4-dimethylpent-1-ene 6a (0.78 $\mathrm{g}, 4.5 \mathrm{mmol})$ in tetrahydrofuran $\left(4 \mathrm{~cm}^{3}\right)$ was prepared in the
manner of 13. ${ }^{30,31}$ The crude product was purified by column chromatography (petrol-ethyl acetate, $10: 1$ to $5: 1$ ) to give the bromo alcohol $20(0.52 \mathrm{~g}, 62 \%)$ as a colourless oil (Found: C, $43.41 ; \mathrm{H}, 7.94 ; \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OBr}$ requires $\left.\mathrm{C}, 43.09 ; \mathrm{H}, 7.75 \%\right)$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3550-3200,2975,1475,1390,1370,1250$ and 1060; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}, J 6.4\right), 3.87(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 1.88(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.44-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.33-1.41$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.99\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; \delta_{\mathrm{C}}\left(74.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 63.4$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 46.5\left(\mathrm{CH}_{2} \mathrm{Br}\right), 36.02\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CMe}_{2}\right)$, $25.8\left(\mathrm{Me}_{2}\right) ; m / z(\mathrm{EI}) 195 / 197\left(\mathrm{MH}^{+}\right), 177 / 179,115,97(100)$.

## 5-Bromo-4,4-dimethylpentanal 21

5-Bromo-4,4-dimethylpentan-1-ol $20(0.4 \mathrm{~g}, 2.0 \mathrm{mmol})$ was subjected to a pyridinium dichromate oxidation using the standard procedure. ${ }^{34}$ Filtration of the residue through a bed of $\mathrm{MgSO}_{4}$-silica ( $1: 1$ ) and removal of the solvent yielded the bromo aldehyde $\mathbf{2 1}(0.3 \mathrm{~g}, 75 \%)$ as a colourless oil; $v_{\text {max }}(\mathrm{film})$ / $\mathrm{cm}^{-1} 2970,2740,1730,1390,1370,1255$ and $655 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CCl}_{4}\right) 9.90(1 \mathrm{H}, \mathrm{t}, \mathrm{CHO}), 3.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 2.30-2.00(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.10-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; m / \mathrm{z}(\mathrm{EI})$ $193\left(35 \%, \mathrm{MH}^{+}\right), 177$ (10), 135 (50), 97 (50), 55 (100), 41 (100). The aldehyde was characterised more fully as the 2,4dinitrophenylhydrazone.

## 5-Bromo-4,4-dimethylpentanal 2,4-dinitrophenylhydrazone 22

An acidic solution of 2,4-dinitrophenylhydrazine ( $0.4 \mathrm{M}, 50$ $\mathrm{cm}^{3}$ ) was added to 5-bromo-4,4-dimethylpentanal $21(20 \mathrm{mg}$, $0.1 \mathrm{mmol})$. After stirring at room temperature for 5 h the derivative was extracted into ethyl acetate $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The solvent was removed and the DNP derivative purified by column chromatography (petrol-ethyl acetate, 2:1) to give the hydrazone $\mathbf{2 2}$ as an orange crystalline solid ( $24 \mathrm{mg}, 63 \%$ ); $v_{\text {max }}$ (disc) $/ \mathrm{cm}^{-1} 3600-3400,3300,2850,1640,1600,1540,1360$, 1320, 1260 and $1140 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 9.10(1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J 2.6), 8.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{Ph}-\mathrm{H}, J 2.6$ and 9.6), 7.92 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J 9.6$ ), $7.56(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 5.2), 3.32(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2}\right), 1.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 152.1, 145.2 , 138.1, 130.1, 129.1 and $123.6(\mathrm{Ph}), 116.7(\mathrm{CH}), 45.7\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, $\left.36.1\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CMe}_{2}\right), 25.9(\mathrm{CMe})_{2}\right)$.

## 2-(4-Bromo-3,3-dimethylbuty)-1,3-dioxolane 23

5-Bromo-4,4-dimethylpentanal 21 ( $0.9 \mathrm{~g}, 4.7 \mathrm{mmol}$ ), ethane-1,2-diol ( $1.2 \mathrm{~cm}^{3}, 18.6 \mathrm{mmol}$ ) and 2,6-di-tert-butyl-4-methylpyridinium tetrafluoroborate ( $2 \mathrm{~mol} \%$ ) were heated in refluxing benzene $\left(12 \mathrm{~cm}^{3}\right)$ under a Dean-Stark trap for 24 h .

The reaction mixture was cooled and the benzene removed under reduced pressure. The residue was dissolved in water ( 50 $\mathrm{cm}^{3}$ ) and extracted with ether $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The ether layer was washed with water $\left(25 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed. The residue was purified by column chromatography (petrol-ethyl acetate, $10: 1$ ) to give the bromo acetal $23(0.8 \mathrm{~g}$, $75 \%$ ) as a colourless oil (Found: C, $45.98 ; \mathrm{H}, 7.26 ; \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Br}$ requires C, 45.75 ; H, $7.25 \%$ ); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2965,2880,1470$, $1410,1390,1370,1230,1140,1050$ and 1030; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 4.6), 3.90$ and $3.79\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 1.52-1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.37-1.43$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.95\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{~Hz} ; \mathrm{CDCl}_{3}\right) 104.7$ (CH), $64.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 46.2\left(\mathrm{CH}_{2} \mathrm{Br}\right), 34.1\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CMe}_{2}\right), 25.6\left(C M e_{2}\right) ; m / z(\mathrm{EI}) 235.0342\left(\mathrm{M}-\mathrm{H}^{+}, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}{ }^{79} \mathrm{Br}\right.$ requires 235.0334) 235/237, 209/211, 135/137, 73 ( $100 \%$ ).

## 2-(3,3-Dimethylbuty)-1,3-dioxolane 24

2-(4-Bromo-3,3-dimethylbutyl)-1,3-dioxolane 23 ( $0.1 \mathrm{~g}, 0.4$ $\mathrm{mmol})$, triphenyltin hydride ( $0.2 \mathrm{~cm}^{3}, 0.8 \mathrm{mmol}$ ) and a trace of AIBN were dissolved in $\mathrm{d}_{6}$-benzene $\left(0.3 \mathrm{~cm}^{3}\right)$ and sealed in an NMR tube under nitrogen. The tube was placed in a water bath at $45^{\circ} \mathrm{C}$ and the reaction monitored by the disappearance
of the $\mathrm{CH}_{2} \mathrm{Br}$ resonance at 3.20 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum ( 60 MHz ).

After $5 \frac{1}{2} \mathrm{~h}$ the reaction mixture was poured into water $\left(10 \mathrm{~cm}^{3}\right)$ and the product extracted into petrol $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. The residue was purified by column chromatography (petrol-ethyl acetate, $10: 1$ ) to give the acetal $\mathbf{2 4}(45 \mathrm{mg}, 67 \%)$ as a colourless oil; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2957,2868,1475,1394,1365,1298,1209$, 1047 and $988 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.74(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 4.8)$, 3.85-3.93 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ ), 3.76-3.80 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ ), $1.53-1.60$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.21-1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 105.5(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 38.0\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CMe}_{3}\right), 29.3(\mathrm{CMe} 3) ; m / z(\mathrm{EI}) 159\left(\mathrm{M}-\mathrm{H}^{+}\right)$, 115, 97, 73, 59 ( $100 \%$ ).

## 4,4-Dimethylpentanal 25a

2-(3,3-Dimethylbutyl)-1,3-dioxolane $24(0.1 \mathrm{~g}, 0.6 \mathrm{mmol})$ was dissolved in aq. THF ( $0.4 \mathrm{~cm}^{3}$ THF, $0.6 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$ ) and Dowex 50 W ion-exchange resin added. The mixture was stirred at room temperature for 24 h .
TLC indicated the absence of starting material and the formation of a DNP positive product. The reaction mixture was extracted with ether $\left(2 \times 1 \mathrm{~cm}^{3}\right)$ and the ether removed by careful distillation through a Vigreux column, followed by distillation of the product. GC analysis of the distillate and residue indicated a clean formation of 4,4-dimethylpentanal. The aldehyde was further characterised by the preparation of the 2,4-dinitrophenylhydrazone 26a in the manner of 22; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 9.14(1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}$, $J 2.6$ ), 8.30 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{Ph}-\mathrm{H}, J 2.6$ and 9.6), 7.96 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}$, $J$ 9.6), 7.57 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 5.2$ ), 2.40-2.50 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.40-$ $1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) ; m / z(\mathrm{EI}) 294.1315\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires 294.1328), 278, 180 ( $100 \%$ ).

## 4-(2,2-Dimethylpropyl)-2,2-dimethyl-1,3-dioxolane 27

Under a nitrogen atmosphere, tributyltin hydride ( $1.2 \mathrm{~cm}^{3}, 4.5$ mmol ) was added to a solution of 4-(3-bromo-2,2-dimethylpropyl)-2,2-dimethyl-1,3-dioxolane ( $0.51 \mathrm{~g}, 2.0 \mathrm{mmol}$ ) in benzene $\left(5 \mathrm{~cm}^{3}\right)$ and the solution was heated at reflux for 20 h. The solvent was removed and the reaction mixture was distilled under reduced pressure to yield acetal 27 as a colourless oil ( $0.28 \mathrm{~g}, 81 \%$ ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2870-2986 \mathrm{~s}, 1157$ and 1067 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.04\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{O}\right.$, $J 7.8$ and 5.7$), 3.42\left(1 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}, J 7.8\right.$ and 7.8$), 1.65(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{CH}_{2}, J 14.0$ and 5.9$), 1.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2}, J 14.0\right.$ and 8.1$), 1.39$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.36 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), $0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right.$ ); $\delta_{\mathrm{C}}(50 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 108.2\left(\mathrm{CMe}_{2}\right), 73.9(\mathrm{CH}), 70.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 47.4\left(\mathrm{CH}_{2}\right), 30.1$ $\left(\mathrm{CMe}_{2}\right), 30.0\left(\mathrm{Me}_{3}\right), 27.1(\mathrm{Me}), 26.1(\mathrm{Me}) ; m / z(\mathrm{EI}) 173\left(\mathrm{MH}^{+}\right)$, 158, 157, 142.

## 4,4-Dimethylpentane-1,2-diol $28^{36}$

A solution of 4-(2,2-dimethylpropyl)-2,2-dimethyl-1,3-dioxolane $(0.17 \mathrm{~g}, 1.0 \mathrm{~mol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ and acetyl chloride $\left(0.35 \mathrm{~cm}^{3}\right)$ was protected from moisture and heated at reflux for 4 h . The extent of reaction was followed by TLC. Removal of the solvent yielded sufficiently pure diol $28(0.12 \mathrm{~g}, 90 \%)$. A small amount was distilled for analysis using a Kugelrohr distillation apparatus; bp $90^{\circ} \mathrm{C}$ at 0.4 mmHg (lit. $.^{3} \mathrm{bp} 83-86^{\circ} \mathrm{C}$ at 0.1 mmHg ); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3360 \mathrm{br}, 2870-2950,1160$ and $1089 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.84(1 \mathrm{H}$, br m, CHOH), $3.54(1 \mathrm{H}$, br m, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.40\left(1 \mathrm{H}\right.$, br m, $\left.\mathrm{CH}_{2}{ }_{2} \mathrm{OH}\right), 1.32(2 \mathrm{H}$, br m, $\left.\mathrm{CH}_{2}\right), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 70.1(\mathrm{CHOH})$, $68.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 46.9\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CMe}_{3}\right), 30.1\left(\mathrm{Me}_{3}\right) ; m / z(\mathrm{EI})$ $265\left(\mathrm{M}_{2} \mathrm{H}^{+}\right), 133,115,101,57$ (100\%).

## 3,3-Dimethylbutanal $32^{37}$

3,3-Dimethylbutan-1-ol was subjected to a pyridinium dichromate oxidation using the standard procedure ${ }^{34}$ to give the aldehyde 32 which was converted into its 2,4-dinitro-
phenylhydrazone $\mathbf{3 3}$ in the manner of $\mathbf{2 2}$ for spectroscopic identification; ${ }^{37} \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.30$ (cis) and 11.08 (trans) ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$ ), 9.15 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J 2.7$ ), 8.32 ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{Ph}-\mathrm{H}$, $J 2.3$ and 9.5 ), 7.98 (cis) and 7.96 (trans) ( $1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J 9.5$ ), 7.59 (trans, $J 6.29$ ) and 7.09 (cis, J5.89) ( $1 \mathrm{H}, \mathrm{t}, \mathrm{CH}$ ), 2.34 (trans, $J 6.27)$ and $2.29(c i s, J 5.98)\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right), 1.12(c i s)$ and 1.05 (trans) $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3}\right)$.

## 5,5-Dimethylhexan-2-one $35^{38}$

Grignard coupling ${ }^{38,39}$ of tert-butyl chloride ( $23.5 \mathrm{~g}, 0.3 \mathrm{mmol}$ ) to methyl vinyl ketone ( $7.0 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in ether ( $40 \mathrm{~cm}^{3}$ ), followed by fractional distillation through a short Vigreux column at 35 mmHg gave the ketone $35(1.8 \mathrm{~g}, 14 \%)$; bp $69^{\circ} \mathrm{C}$ ( 35 mmHg ) (lit. ${ }^{38} 71-72^{\circ} \mathrm{C}$ at 35 mmHg ); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2957$, 2868, 1718 and 1365; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.34(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{CO}, J 8.1\right), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{Me}_{3} \mathrm{CH}_{2} J\right.$ 8.1), $0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3}\right) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 209(\mathrm{C}=\mathrm{O}), 39.5$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 37.4(\mathrm{Me}), 29.9\left(\mathrm{Me}_{3} \mathrm{CH}_{2}\right), 29.1\left(\mathrm{Me}_{3}\right) ; m / z(\mathrm{EI})$ $128.1199\left(\mathrm{M}^{+}, \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}\right.$ requires 128.1201), 128 ( $18 \%$ ).
The corresponding hydrazone $36^{37}$ was synthesised from 35 in the manner of 22; $v_{\text {max }}(\mathrm{disc}) / \mathrm{cm}^{-1} 3323,3109,2957,2866$, 2108, 1628, 1506 and 1336; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2$ (trans) and $11.0($ cis $)(1 \mathrm{H}, \mathrm{br}$ s, NH), $9.12(1 \mathrm{H}, \mathrm{d}, \mathrm{Ph}-\mathrm{H}, J 2.6), 8.27$ ( $1 \mathrm{H}, \mathrm{dd}, \mathrm{Ph}-\mathrm{H}, J 2.2$ and 9.6 ), 7.95 (1H, d, Ph-H, J 9.6), 7.48 (trans) and 6.91 (cis) ( $1 \mathrm{H}, \mathrm{t}, \mathrm{CH}, J 5.37$ ), 2.31-2.42 $(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CN}$ ), 2.13 (cis) and 2.05 (trans) ( $3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ ), 1.40-1.45 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{CH}_{2}$ ), 0.99 (cis) and 0.95 (trans) ( $9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3}$ ); m/z (EI) $308.1489\left(\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}\right.$ requires 308.1484), $380(26 \%$, $\mathrm{M}^{+}$) 251 (35), 237 (5).

## Acknowledgements

We thank the EPSRC for support and Mr E. Hart for technical assistance.

## References

1 (a) R. H. Abeles, A. M. Brownstein and C. H. Randles, Biochem. Biophys. Acta, 1960, 41, 531; (b) T. Tobimatsu, T. Sakai, Y. Hashida, N. Mizoguchi, S. Miyoshi and T. Toraya, Arch. Biochem. Biophys., 1997, 347, 132; (c) T. A. Bobik, Y. Xu, R. M. Jeter, K. E. Otto and J. R. Roth, J. Bacteriol., 1997, 179, 6633; (d) T. Toraya, in Chemistry \& Biochemistry of $B_{12}$, ed. R. Banerjee, Wiley-Interscience, New York, 1999, ch. 31, p. 783; (e) T. Toraya, Cell. Mol. Life Sci., 2000, 57, 106.
2 (a) T. Tobimatsu, M. Azuma, H. Matsubara, H. Takatori, T. Niida, K. Nishimoto, H. Satoh, R. Hayashi and T. Toraya, J. Biol. Chem., 1996, 271, 22352; (b) L. Macis, R. Daniel and G. Gottschalk, FEMS Microbiol. Lett., 1998, 164, 21.
3 (a) B. M. Babior, in $B_{12}$, ed. D. Dolphin, Wiley, New York, 1982, vol. 2, p. 263; (b) V. Bandarian and G. H. Reed, in Chemistry \& Biochemistry of $B_{12}$, ed. R. Banerjee, Wiley-Interscience, New York, 1999, ch. 32, p. 811.
4 B. M. Babior, BioFactors, 1988, 1, 21.
5 B. T. Golding and W. Buckel, in Comprehensive Biological Catalysis, ed. M. L. Sinnott, Academic Press, New York, 1998, ch. 33, p 239.
6 R. Banerjee, Chem. Biol., 1997, 4, 175.
7 (a) R. G. Finke, D. A. Schiraldi and B. J. Mayer, Coord. Chem. Rev., 1984, 54, 1; (b) R. G. Finke, in Molecular Mechanisms in Bioorganic Processes, eds. C. Bleasdale and B. T. Golding, Royal Society of Chemistry, 1990, 281.
8 B. T. Golding, in $B_{12}$, ed. D. Dolphin, Wiley-Interscience, New York, 1982, ch. 15, 543.
9 G. Gerfen, in Chemistry \& Biochemistry of $B_{12}$, ed. R. Banerjee, Wiley-Interscience, New York, 1999, ch. 31, p. 783.
10 S. A. Cockle, H. A. O. Hill, R. J. P. Williams, S. P. Davies and M. A. Foster, J. Am. Chem. Soc., 1972, 94, 275.
11 (a) B. T. Golding, T. J. Kemp, E. Nocchi and W. P. Watson, Angew. Chem., Int. Ed. Engl., 1975, 14, 813; (b) B. T. Golding, C. S. Sell and P. J. Sellars, J. Chem. Soc., Chem. Commun., 1976, 773; (c) B. T. Golding, T. J. Kemp, C. S. Sell, P. J. Sellars and W. P. Watson, J. Chem. Soc., Perkin Trans. 2, 1978, 839; (d) B. T. Golding, C. S. Sell and P. J. Sellars, J. Chem. Soc., Perkin Trans. 2, 1980, 961; (e) R. M. Dixon, B. T. Golding, S. Mwesigye-Kibende and D. N. Ramakrishna Rao, Philos. Trans. R. Soc. London, Ser. A, 1985, 311,

531; ( $f$ ) R. J. Anderson, S. Ashwell, R. M. Dixon and B. T. Golding, J. Chem. Soc., Chem. Commun., 1990, 70; (g) B. T. Golding, R. J. Anderson, S. Ashwell, C. H. Edwards, I. Garnett, F. Kroll and W. Buckel, Proceedings of the 4th European Symposium on Vitamin $B_{12}$, eds. B. Kräutler, D Arigoni and B. T. Golding, Verlag Chemie, Innsbruck, 1998, p. 201.
12 P. Müller and J. Rétey, J. Chem. Soc., Chem. Commun., 1983, 1342.

13 B. T. Golding and L. Radom, J. Am. Chem. Soc., 1976, 98, 6331.
14 D. M. Smith, B. T. Golding and L. Radom, J. Am. Chem. Soc., 1999, 121, 5700.
15 N. Shibata, J. Masuda, T. Tobimatsu, T. Toraya, K. Suto, Y Morimoto and N. Yasuoka, Structure, 1999, 7, 997.
16 T. Toraya and S. Fukui, in $B_{12}$, ed. D. Dolphin, Wiley, New York, 1982, vol. 2, 233.
17 (a) J. Halpern, Ann. N. Y. Acad. Sci, 1974, 239, 2; (b) B. T. Golding and L. Radom, J. Chem. Soc., Chem. Commun., 1973, 939.
18 C. J. Suckling, D. Arigoni and B. M. Babior, J. Biol. Chem., 1974, 249, 6359.
19 R. D. Scheutz and F. W. Millard, J. Org. Chem., 1959, 24, 297
20 R. E. Ireland, R. H. Mueller and A. K. Willard, J. Am. Chem. Soc., 1976, 98, 2866.
21 (a) B. T. Golding, T. J. Kemp, P. J. Sellars and E. Nocchi, J. Chem. Soc., Dalton Trans., 1977, 1266; (b) B. T. Golding, T. J. Kemp and H. H. Sheena, J. Chem. Res. ( M), 1981, 334.

22 (a) J. H. Grate and G. N. Schrauzer, J. Am. Chem. Soc., 1979, 101, 4601; (b) J. M. Pratt, in $B_{12}$, ed. D. Dolphin, Wiley, New York, 1982, vol. 1, ch. 10, p. 325.
23 (a) A. P. Henderson, J. Riseborough, C. Bleasdale, W. Clegg, M. R. J. Elsegood and B. T. Golding, J. Chem. Soc., Perkin Trans. 1, 1997,

3407; (b) B. T. Golding, A. Mitchinson, W. Clegg, M. R. J. Elsegood and R. J. Griffin, J. Chem. Soc., Perkin Trans. 1, 1999, 349.
24 K. C. Brannock, J. Am. Chem. Soc., 1959, 81, 3379.
25 (a) E. A. Hill, D. C. Link and P. Donndelinger, J. Org. Chem., 1981, 46, 1177; (b) A. L. J. Beckwith, C. J. Easton, T. Lawrence and A. K. Serelis, Aust. J. Chem., 1983, 36, 545.
26 J. Hooz and S. S. H. Gilani, Can. J. Chem., 1968, 46, 86.
27 R. T. Arnold and S. T. Kulenovic, J. Org. Chem., 1978, 43, 3087.
28 (a) H. J. Günther, E. Guntrum and V. Jäger, Liebigs Ann. Chem., 1984, 15; (b) M. Kawashima, T. Sato and T. Fujisawa, Tetrahedron, 1989, 45, 403; (c) S. A. Glover and A. L. J. Beckwith, Aust. J. Chem., 1987, 40, 701.
29 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.

30 M. Negishi and H. C. Brown, Synthesis, 1974, 77.
31 G. Zweifel, N. R. Ayyanger and H. C. Brown, J. Am. Chem. Soc., 1963, 85, 2072.
32 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651; A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
33 R. H. Wollenberg and S. J. Miller, Tetrahedron Lett., 1978, 19, 3219.
34 E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399.
35 A. Vogel, in Quantitative Organic Synthesis, 4th edn., Longman, New York, 1978, 730.
36 R. S. Edmundson and C. I. Forth, Phosphorus Sulfur, 1980, 8, 315.
37 F. C. Whitmore and A. H. Homeyer, J. Am. Chem. Soc., 1933, 55, 4555.

38 E. H. Man, F. C. Frostick, Jnr. and C. R. Hauser, J. Am. Chem. Soc., 1952, 74, 3228
39 K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis and A. Sexton, J. Org. Chem., 1991, 56, 698.

